
OPTOELECTRONICS AND ADVANCED MATERIALS – RAPID COMMUNICATIONS Vol. 9, No. 9-10, September – October 2015, p. 1214 - 1220 

 

Optical solitons with resonant nonlinear Schrödinger’s 

equation using G’/G-expansion scheme 
 

 
AHMED HASSAN ARNOUS

a
, MOHAMMAD MIRZAZADEH

b
, QIN ZHOU

c
, MOHAMMAD F. MAHMOOD

d
, 

ANJAN BISWAS
e,f,*

, MILIVOJ BELIC
g
 

a
Department of Engineering Mathematics and Physics, Higher Institute of Engineering, El Shorouk, Egypt 

b
Department of Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran 

c
School of Electronics and Information Engineering, Wuhan Donghu University, Wuhan, 430212, P.R. China 

d
Department of Mathematics, Howard University, Washington, DC-20059, USA 

e
Department of Mathematical Sciences, Delaware State University, Dover, DE 19901-2277, USA 

f
Department of Mathematics, Faculty of Science, King Abdulaziz University Jeddah-21589, Saudi Arabia 

g
Science Program, Texas A & M University at Qatar, PO Box 23874, Doha, Qatar 

 

 

 

This paper implements G’/G-expansion scheme to retrieve soliton solution to the resonant nonlinear Schrödinger’s 
equation. Both cubic form and power law nonlinearity are considered in this paper. The results appear with constraint 
conditions that guarantee the existence of these solitons. As a byproduct, singular periodic solutions are revealed.  
 
(Received February 13, 2015, accepted September 9, 2015) 

 
Keywords: Solitons, Integrability, G’/G-expansion 

 

 

 
1. Introduction 
 

Optical solitons is a major area of research in 

nonlinear fiber optics. The governing equation is the 

nonlinear Schrödinger’s equation (NLSE) that appears 

with numerous forms of nonlinearity [1-15]. There are 

several variational forms of NLSE that are studied in this 

context. One of them is Schrödinger-Hirota equation that 

is studied to describe dispersive optical solitons. Another 

form is chiral NLSE that is studied in the context of 

quantum Hall effect. This paper is going to address 

resonant NLSE (RNLSE) that is studied in the context of 

Madelung fluids.  

There are two nonlinear forms where RNLSE will 

be addressed in this paper. These are cubic nonlinearity, 

also known as Kerr law nonlinearity, and power law 

nonlinearity, which collapses to Kerr law when the 

power law nonlinearity parameter is set to unity. The 

cases for parabolic law and dual-power law are already 

addressed earlier [4]. In order to keep it on a generalized 

perspective, RNLSE is considered with time-dependent 

coefficients in this paper. The integration algorithm that 

will be implemented here is G’/G-expansion scheme. 

This will lead to dark and singular solitons solutions. As 

a byproduct, singular periodic solutions are revealed that 

are also listed in this paper.  

 

2. Succinct overview of G’/G-expansion 
 

The algorithm for this integration scheme is pretty 

much well known to the scientific community. 

Nevertheless it is worthwhile to describe this scheme 

succinctly. The main algorithmic steps are as follows [9]: 

Step-1: Suppose a nonlinear partial differential equation 

(PDE) with time-dependent coefficients  

 

0...),,,,,( ttxtxxxt uuuuuuP                      (1) 

can be converted to an ordinary differential equation (ODE) 

 

0...),,,(  UUUUQ                           (2) 

 

using a traveling wave variable )(),( Utxu  , 

ttvx )( , where )(UU   is an unknown function, 

Q  is a polynomial in the variable U  and its derivatives.  If 

all terms contain derivatives, then Eq. (2) is integrated where 

integration constants are considered zeros. 

Step-2:  Suppose  that  the  solution  of  ODE  (2)  can  

be  expressed  by  a  polynomial  in  G’/G  as follows: 
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where la  are real constants with 0Na  and N is a 

positive integer to be determined. The function )(G  is the 

solution of the auxiliary linear ordinary differential equation 

 

0)()()(   GGG                 (4) 

 

where   and   are real constants to be determined.  
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Step-3: Determining N , it can be accomplished by 

balancing the linear term of the highest-order derivatives 

with the highest-order nonlinear term in Eq. (2). 

Step-4: Substituting the general solution (3) 

together with (4) into Eq. (2) yields an algebraic 

equation involving powers of G’/G.  Equating the 

coefficients of each power of G’/G to zero gives a 

system of algebraic equations for la ,  ,   and )(tv . 

Then one can solve the system with the aid of a 

computer algebra system, such as Mathematica, to 

determine these constants. Depending on the sign of the 

discriminant  42  , solutions of Eq. (2) can be 

obtained. So, we can obtain exact solutions of the given 

Eq. (1). 

 

 

3 Application to  RNLSE  
 
In this section, we shall apply G’/G-expansion 

scheme to solve the RNLSE with time-dependent 

coefficients [4, 6]. The general form of RNLSE with an 

arbitrary nonlinear form is [1]:  
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In equation (5), the first term is the linear temporal 

evolution, while )(t  is time-dependent coefficient of 

group-velocity dispersion (GVD) and )(t  is time-

dependent coefficient of nonlinearity. Finally, )(t  is 

quantum or Bohm potential that arises in chiral solitons 

with quantum Hall effect [1]. It is also seen in the 

context of Madelung fluid in quantum mechanics [1]. 

Also, the functional F  meets the following technical 

condition:   

For technical condition, F  is a real-valued 

algebraic functional and it is necessary to have the 

smoothness of the complex function 

  CCF :
2
 . Considering the complex plane 

C  as a two-dimensional linear space 
2R , the function 

 
2

F  is k  times continuously differentiable, so 

that [1] 
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This paper will obtain soliton solutions to (1) for 

Kerr law and power law nonlinearity. The cases for 

parabolic law and dual-power laws are reported earlier 

[4].  

 

3.1 Kerr law 

 

The Kerr law nonlinearity is the case when ssF )( . 

This is also occasionally referred to as cubic nonlinearity. In 

fiber optics, this nonlinearity is also known as Kerr 

nonlinearity and appears when refractive index of light is 

intensity dependent. Additionally, this nonlinearity is studied 

in water waves. In dimensionless form, RNLSE for Kerr law 

nonlinearity is written as [7, 8]  
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Under the traveling wave hypothesis  

 
 ttxieUtx )()(),(                        (7-1) 
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we have  
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Balancing U   with 
3U  in Eq. (8), then we get 

1N .  We then suppose that Eq.  (8) has the following 

formal solution 
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Therefore, we have  
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Using the solution procedure of the G’/G-expansion 

method, we obtain the system of algebraic equations as 

follows: 
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Solving the previous system of algebraic equations, 

we obtain the following result  

 

 
)(

)()(2

2
0

t

tt
a



 
              (15-1) 

 


0

1

2a
a                             (15-2) 

 

 
dt

tt

t

t
t

t





















0

2

2

)4()()(
2

1

)(
1

)(




 (15-3) 

 

where  ,   and   are arbitrary real constants. The 

solution of Eq. (5) corresponding to (15) has the 

following cases 

Case-1: If 042   , we obtain 
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If we set 02 C , 01 C   
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If we set 01 C , 02 C , we obtain  
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Case-2: If 042   , we obtain  
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If we set 02 C , 01 C , we obtain  
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If we set 01 C , 02 C , we obtain  
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The solutions given by (17) and (18) are dark and 

singular solitons respectively that exist provided  
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while the solutions (20) and (21) are singular periodic 
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3.2 Power law  

 

The power law nonlinearity arises when 
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where the parameter n accounts for nonlinearity parameter. 

This kind of law appears in the context of plasma physics,  

turbulence theory and occasionally in nonlinear fiber optics. 

It needs to be however noted that one must have 
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in order to avoid self-focusing singularity and soliton 

collapse in optics [7,  8]. For power law nonlinearity, the R-

NLSE takes the form [7, 8]  

 

0)(

)()(
2



























xx

n

xxt

t

tti

              (25) 

 

For searching the one-soliton solution for the above 

model, we use the same wave transformation  
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Substituting Eq. (26) into Eq. (25), we obtain ordinary 
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To obtain an analytic solution, we use the 
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Balancing VV   with 
3V  in Eq. (28), then we get 

2N .  We then assume that Eq.  (28) has the 

following formal solution  

 

01

2

2

''
a

G

G
a

G

G
aV 

















              (29) 

 

Therefore, we have  

 





121

2

12

3

1

'
)2(

'
)2(

'
2

a
G

G
aa

G

G
aa

G

G
aV






























     (30) 

 

)2(

'
)6)2((

'
)3)2(4(

'
)5(2

'
6

21

2

2

1

2

1

2

2

3

12

4

2









aa

G

G
aa

G

G
aa

G

G
aa

G

G
aV










































   (31) 

 

Using the solution procedure of the G’/G-expansion 

method, we obtain the system of algebraic equations as 

follows: 
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Solving the above system of algebraic equations, 

we obtain the following results:  
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where  ,   and   are arbitrary real constants. The 

solution of Eq. (25) corresponding to (36) has the 

following cases  
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If we set 02 c , 01 c , we obtain 
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If we set 01 c , 02 c , one recovers 
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and these are dark and singular soliton solutions 

respectively. Their existence is guaranteed vy virtue of (22). 

On the other hand,   

 

Case-2: If 042   , we have  
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If we set 02 c , 01 c , we obtain 
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If we set 01 c , 02 c , we obtain 
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which are singular periodic solutions that exist provided 

(23) holds.                                                                        
 

 

4. Conclusion 

 
This paper obtained soliton solutions to NLSE with 

cubic and power law nonlinearities. The integration 

scheme adopted is G’/G-expansion. This lead to the 

retrieval of dark and singular soliton solutions to the 

model. The results for power law nonlinearity collapses 

to Kerr law upon setting the power law nonlinearity 

parameter 1n . It must be noted that it is only the 

dark and singular soliton solutions that are recoverable 

by this integration scheme. Thus bright solitons cannot 

be obtained using this scheme.  This is a limitation of 

this integration scheme. However, there are other tools 

to secure these bright solitons as reported earlier [1, 2]. 

Further schemes will be explored later and the results 

will be reported in future. 
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